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ABSTRACT

In this paper, we present a real-time tracking approach based
on the Optimal Feature Subspace (OFS). OFS is an optimal
subspace of a random feature space, which can best repre-
sent the target and making it most distinguished in the whole
scene. Initially, we randomly crop patches inside the bound-
ing box to generate an efficient feature template set. Then
a greedy algorithm fusing the cues of both target and back-
ground is proposed to seek the OFS at every frame. In the
forthcoming frame, considering the correlation of different
dimensions, we compute the Mahalanobis distance of can-
didate patches to the appearance model in the obtained sub-
space to locate the target. The experimental results on several
challenging video clips demonstrate that our approach outper-
forms the state-of-the-art methods, in terms of both speed and
robustness.

Index Terms— Real-time object tracking, Bayesian in-
ference, Optimal Feature Subspace

1. INTRODUCTION
Visual tracking has long been one of the most important prob-
lems in computer vision. It is a challenging problem due to
many factors including occlusion, motion blur, pose change,
illumination variation and background clutter.

Current tracking algorithms can be categorized into gen-
erative approaches and discriminative ones. Discriminative
methods treat tracking as a classification problem which dis-
tinguishes the target from the background [1][2][3][4]. They
can combine information of both the target and background.
Grabner [3] uses a boosting algorithm to achieve discrimina-
tive features and in [4] another similar approach in a semi-
online manner is used to handle the drifting problem. Bar-
benko et al.[5] propose a multiple instance learning algorithm
which can handle ambiguities in the training data. Generative
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approaches focus on measurement of the distance from the
search regions to the target model [6][7][8][9][10][11][12].
The IVT method [13] utilizes an incremental subspace model
to cope with appearance variation. Kwon et al.[6] decompose
the observation model into multiple basic observation mod-
els to cover a wide range of pose and illumination change.
Li et al.[14] use sparse representation to formulate `1-tracker
which is solved by the orthogonal matching pursuit algorithm.

Different from the above methods, we strive to seek an
Optimal Feature Subspace (OFS) to represent the target in
a specific scenario. To begin with, based on Haar-like fea-
ture, we generate a sufficient feature template set through
random sampling method, although many feature templates
in this set hold no effectiveness for tracking. The philoso-
phy of our approach is essentially to make full use of both
positive and negative features. Specifically, we apply the fea-
ture template set in the target patch and some other image
patches far away from it, and then we get one positive fea-
ture and some negative features. By measuring the standard-
ized distance between the positive and negative features, those
feature dimensions which have strong ability to separate the
target from the background can be inferred. The target can
be then represented in the OFS most distinctively and accu-
rately. Moreover, our appearance model changes gradually in
pace with the target by modifying the OFS moderately at ev-
ery new frame, such that our tracker can handle problems like
occlusions. Eventually, the process of predicting the location
of target in the next frame is simply matching the candidate
to the appearance model via Mahalanobis distance in OFS.

In general, the main contributions of the proposed track-
ing approach based on OFS are:
• Our tracker adaptively compresses original target im-

age into a low-dimension feature subspace with good
property of image representation.
• Owing to the random sampling strategy, our feature

template set can draw a coarse-to-fine global descrip-
tion of the target, which makes our OFS adaptive to a
wide range of challenges.
• The low computational complexity of solving the OFS

guarantees our tracker is a real-time system.
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The remainder of this paper is organized as follows: in
Sec.2, we formulate the tracking problem; in Sec.3 the novel
tracking method is proposed; in Sec.4, we evaluate our sys-
tem on some challenging videos for object tracking. We draw
conclusion in Sec.5.

2. PROBLEM FORMULATION
In this section, we interpret visual tracking problem as a
Bayesian inference problem in a Markov model with hidden
state variables. Given an observed frame set up to the t-th
frame y1:t = {y1,y2, ...,yt}, the hidden state variable xt can
be estimated recursively,

p(xt|y1:t) ∝ p(yt|xt)

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1

(1)
where p(yt|xt) is the appearance model that estimates the
likelihood of observation yt predicted by hidden state xt,
while p(xt|xt−1) is the motion model giving prior fact on
relations of states between two consecutive frames. Hidden
state x, in our work, indicates the (x, y) coordinates of the
patch center. Practically, we sample abundant candidate im-
age patches to match with the target. Hence, the optimal state
x̂t of target at time t can be obtained by the Maximum A Pos-
terior estimation:

x̂t = arg max
xi
t

p(xi
t|y1:t)

= arg max
xi
t

p(yt|xi
t)p(x

i
t|xt−1)

(2)

where xi
t denotes the state xt of i-th sample.

We establish the motion model based on inertia assump-
tion. In reality, every object has tendency to maintain its mo-
tion state. Consequently, at time t, the location of the target
is expected to be the previous location plus the last displace-
ment, and we assume it to be Gaussian distributed:

p(xt|xt−1) = N(xt;µ,Σ) (3)

where µ = xt−1 + (xt−1 − xt−2) is the expected location.

Σ =

(
σ2 0
0 σ2

)
is a diagonal covariance matrix, where σ is

the standard deviation for x, y.
The other subproblem is the appearance model, and it

plays a key role in our approach, which will be discussed
in detail in Sec.3. In brief, we attempt to represent the tar-
get by learning an Optimal Feature Subspace f̂ . Based on
this feature representation, we compute Mahalanobis dis-
tance DM (xi

t) from a sampled candidate xi
t to the target.

Therefore, the appearance likelihood is formulated as:

p(yt|xi
t) ∝ exp(−DM (xi

t)) (4)

3. APPEARANCE MODEL
In this section, we are aimed at seeking an OFS for the ap-
pearance model. Our approach is based on feature template
sampling and feature selection.

Fig. 1. The overview of generating feature template set and
obtaining positive and negative features.

3.1. Feature Template Sampling
The primary consideration is that an OFS is feasible on condi-
tion that we get an over-complete feature space. Meanwhile,
it’s obvious that the original image patch has both auxiliary
and redundant information for tracking. Based on the above
knowledge, we adopt random sampling strategy to generate a
qualified feature template set.

Formally, we randomly crop M patches inside the bound-
ing box, where M is large enough to make sure the feature
template set is over-complete. Every feature template corre-
sponds to a Haar-like feature value f . Here we choose Haar-
like feature [15], since it is invariant to moderate rotation and
scale changes. In addition, benefiting from the Integral Im-
age, the calculation speed of the feature can be accelerated re-
markably. In this way, we establish a feature template set, i.e.,
an over-complete feature space f = [f1, f2, ..., fM ]>, where
f ∈ RM×1.

At every time step t, our tracker crops out a group of N
image patches Lr = {l|‖l − x‖2 > r} that are outside some
radius r of the current tracker location, where l denotes the lo-
cation of a image patch which has the same size as the bound-
ing box. On one hand, we apply the feature templates on
each image patch in the negative bag Lr to obtain the nega-
tive feature pool F− = [f1, f2, ..., fN ]. On the other hand, our
positive feature pool is simply the feature vector of the target
image F+ = [f0]. Here F+ ∈ RM×1, and F− ∈ RM×N .

The whole process is visualized in Fig. 1. The yellow box
indicates the location of the target. Outside the green search
window are the randomly sampled image patches which are
represented by red boxes. The blue rectangles are also ran-
domly generated which constitute our feature template set.
Consequently, there is only one positive feature and N nega-
tive features.

3.2. Optimal feature subspace
Intuitively, a target owns visual uniqueness in the whole
scene, and can be separated from the background in a low-
dimension feature subspace. Furthermore, this randomized
feature template set may contain those mis-aligned patches
which will degrade our appearance model. Therefore, we
propose to extract a sparse feature vector f̂ , i.e., an OFS,
from the aforementioned feature space, which is illustrated in
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Fig. 2. Graphic representation of feature selection. In the
matrix, different colors illustrate different values.
Fig.2.

Our goal is to find the optimal K-dimension feature sub-
space which is proper to represent the target, hence the opti-
mization problem is formulated as:

max
f̂⊆f

D(F+,F− |̂f). (5)

The objective functionD(F+,F− |̂f) denotes the distance be-
tween the feature pool F− and F+ in the feature subspace f̂ .

In order to solve this problem, we propose a greedy al-
gorithm. The subspace f̂ corresponds to an index set Ω =
{i1, i2, ..., iK}which is a subset of {1, 2, ...,M}, thus the dis-
tance can be formulated as bellow:

D(F+,F− |̂f) =
∑
i∈Ω

Di(F
+,F−). (6)

Actually, the criteria to select the i-th feature dimension is
supposed to be the distance Di(F

+,F−) from the negative
feature pool to the positive pool in this dimension. Before
computing the distance, we have to know the covariance S of
all the dimensions:

S = E[(f − E[f ])(f − E[f ])>], (7)

where E[f ] =
N∑
j=0

fj/(N + 1). The covariance matrix S ∈

RM×M will ont only be used in data preprocessing, but also
make analysis of the correlation among different feature di-
mensions, which will be discussed at length in Sec.3.3. After
that, the Euclidean distance between the i-th feature of the j-
th negative sample patch fij and the expected positive feature
fi0 will be standardized by:

Dij =
‖fij − fi0‖

Sii
∀i ∈ 1, 2, ...,M, ∀j ∈ 1, 2, ..., N (8)

where ‖·‖ denotes `1-norm, and Sii indicates the i-th diagonal
element of S, i.e., the variance of the data set in i-th dimen-
sion. In this way, we can define the distance between positive
feature pool and the negative one in the i-th dimension by:

Di(F
+,F−) = min

j
(Dij), (9)

since the minimal distance exactly reflects the discriminative
capacity of one feature dimension. Based on Eqs.(6)-(9), our
algorithm is summarized in Alg.1 (Di(F

+,F−) is denoted as
Di for simplicity).

Algorithm 1: Greedy algorithm to optimize feature sub-
space

Input: Negative and positive feature pool F−, F+

1 Data preprocessing: calculate covariance matrix S and
the standardized distance Dij =

‖fij−fi0‖
Sii

2 Distance computation: for the i-th dimension of feature
space, Di(F

+,F−) = minj(Dij)
3 Distance ranking: rank the distances in descending

order Di1 > Di2 > · · · > Dik > · · · > DiM , where
{i1, i2, ..., iM} is a permutation of {1, 2, ...,M}

4 Feature selection: choose the first K dimensions to
construct the optimal subspace f̂ = [fi1 , fi2 , ..., fiK ]>,
where f̂ ∈ RK×1

Output: Optimal Feature Subspace f̂

3.3. Likelihood computing
With the learned feature template f̂ , the rest of the problem is
readily solved. The likelihood p(yt|xi

t) can be measured by
the Mahalanobis distance DM (xi

t) between the feature f̂(xi
t)

of the candidate patch xi
t in the search window and our ap-

pearance model f̂t at time step t:

DM (xi
t) =

√
(f̂(xi

t)− f̂t)>Ŝ−1(f̂(xi
t)− f̂t), (10)

where the covariance matrix Ŝ ∈ RK×K can be easily ob-
tained by extracting the {i1, i2, ..., iK} columns and rows of
S. Mahalanobis distance makes our computation of likeli-
hood much more credible, as it takes into consideration the
correlation of the different dimensions in the feature subspace
f̂ (e.g., two overlapped template patches in Fig.1).

3.4. Update of appearance model
Tracking with the fixed templates will be prone to failure in
cases where there are illumination change, occlusion, pose
variation, etc. Numerous methods have been designed to pre-
vent the tracker drifting away from the target. Ross et al. [13]
extend the sequential Karhunen-Loeve algorithm and propose
an incremental PCA algorithm to update the appearance. Mei
and Ling [16][17] apply sparse representation in tracker to
handle outliers and partial occlusion. In our paper, we update
our appearance model in a relatively simple and effective way.
At time step t + 1, some dimensions of optimal feature sub-
space f̂t will be removed and an equal number of new features
will be added. In detail, the randomly chosen νK dimensions
in f̂t will be maintained, and the rest (1− ν)K entries will be
chosen from theM−νK feature dimensions left in the feature
template set, where ν denotes the forgetting ratio. The way of
selecting the new (1− ν)K feature dimensions is pretty sim-
ilar to Alg.1.

3.5. Computational complexity
One advantage of tracking via OFS is low computational
complexity. In feature sampling, the positive feature pool
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Frag MTT APG OAB OurMIL PLS

Fig. 3. Comparison with other state-of-the-art tracking methods

F+ is a M -dimensional vector, while the negative feature
pool F− is comprised of MN elements. Moreover, feature
selection is just a sorting performed on M standardized Eu-
clidean distances. In the likelihood computing, assuming that
there are P candidate patches to choose from, the time cost
is proportional to patch number P times feature dimension
K. Therefore, the total computational complexity is only
Θ(MN +M log(M) + PK).

4. EXPERIMENTS
We perform our experiments on nine publicly available video
sequences, and the authors label the ground truth center of the
object for every frame. These videos provide a wide range of
significant challenges including occlusion, motion blur, scale
variation, rotation, pose variation and cluttered background.
The tracking results are summarized in Table 1 and Fig. 3, and
our tracker is gauged against six other state-of-the-art track-
ers with the same initial position of the target. These track-
ers include PLS [18], MTT[19], APG[20], OAB[3], Frag[21],
MIL[15].

Our tracker is implemented in MATLAB and runs at 20
frames per second on a 2.53GHz Intel Core i3 CPU with 2GB
memory. We choose K = 100 features from M = 1000 ran-
domized features. The forgetting ratio in the update module
is set to be ν = 0.7. The size of search window depends on
the specific video. In general, the robustness of our tracker
is insensitive to parameters, since our optimal feature sub-
space learned from a randomly generated template set gives a
coarse-to-fine description of the target.

Quantitatively, we adopt the Average Center Location Er-
ror(ACLE), which measures the distance between the tracked
and the ground truth center locations, to evaluate a tracker’s
performance. In most of the nine tested videos, our tracker
achieves the best performance, while in David2 and Girl, our
tracker also ranks top three. In terms of average ACLE among
all the videos, our tracker outperforms all the other methods,
which evidently shows that our approach is robust to different
tough situations.

Qualitatively, Fig.3 illustrates vividly that our tracker can
handle challenges better. Results on sequence FaceOcc1,

Table 1. Average Center Location Error measured in pixels.
Red color indicates best performance, while blue indicates
second best.

Video Our APG Frag MIL MTT OAB PLS
Deer 9.97 237.79 86.19 227.13 11.08 216.61 153.91

Jumping 4.63 34.88 17.66 7.32 63.78 7.49 42.51
Football1 5.13 35.42 22.37 8.18 21.99 29.92 24.08

David 8.30 37.42 53.88 10.74 133.19 32.28 90.22
David2 2.15 4.81 6.71 26.56 1.30 4.89 71.74

FaceOcc1 11.34 12.84 39.09 31.42 22.52 60.48 34.96
FaceOcc2 6.56 15.65 33.49 14.08 13.83 16.18 14.26

Fish 11.21 38.23 43.56 37.25 29.98 27.39 41.78
Girl 10.30 4.47 13.37 14.72 8.91 10.65 83.74

Average 7.73 46.83 35.15 41.93 34.06 45.11 61.91

FaceOcc2 and Football1 show optimal feature subspace
makes our appearance model adaptive to occlusion, since
patches on the occluded regions will be omitted automati-
cally. Deer and Jumping prove that motion blur is within our
tacker’s capacity. This owes to Haar-like feature template set
which can provide an overview characteristics of the target
without paying excessive attention on meaningless details.
In addition, David and David2 demonstrate that our tracker
copes well with situations where there are subtle pose varia-
tion and scale change, even though the scale of the bounding
box in our tracker is fixed. Finally, it’s revealed in Fish and
Girl that our method is capable of handling appearance and
illumination change, owing that the optimal feature subspace
is updated in a reasonable manner.

5. CONCLUSION

In this paper, we propose a real-time and effective track-
ing algorithm based on Optimal Feature Subspace. Random
sampling strategy guarantees the completeness of the fea-
ture space, since sampled templates are in various scales and
shapes. Eliminating redundancy, the optimal feature subspace
is proper and effective to represent the target. Furthermore,
Mahalanobis distance takes correlations of different dimen-
sions into consideration. In summary, our model performs
well in terms of robustness and speed.
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