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Image Decomposition and Texture Segmentation
via Sparse Representation

Fan Zhang, Xiaoqiong Ye, and Wenyu Liu

Abstract—Decomposing an image into a texture part and a non-
texture (cartoon) part, as well as grouping the texture part into sev-
eral homogeneous subparts, is studied in this letter. The so-called
texture part is composed of both the self-similar structure and the
oscillatory noise. The self-similar structure of each homogenous
subtexture is captured in its principal subspace. Both the segmen-
tation and the decomposition are essentially related to sparse rep-
resentation and are united to a framework.

Index Terms—Clustering, principal component analysis (PCA),
sparse representation, texture, total variation, unsupervised
learning.

I. INTRODUCTION

D ECOMPOSING an image into a texture part and a non-
texture (cartoon) part, as well as grouping the texture part

into several homogeneous subparts, is of great interest in many
image applications. Often it is difficult to formulate the texture
and the nontexture part explicitly. Generally speaking, the non-
texture part corresponds to the main large objects in an image,
and the texture part contains fine-grained details. The definition
of texture is vague and highly depends on the application task.
This letter, as a follow-up of [1], aims to fully extract the tex-
ture part from an image and facilitate watermarking. By doing
so, the texture does not only contain a trivial noisy part [2]–[4],
but it also includes self-similar structure.

Texture was firstly paid enough attention to by Meyer under
the topic of image decomposition [5]. He characterized the tex-
ture in a functional space where the large oscillatory signals
have small norms. Aujol and Gilboa modeled the texture in
kernel Hilbert space by introducing a convolution kernel [6].
The kernel is supervisedly selected to penalize the norm of the
signal in the frequencies and the direction that should mainly
be included in the texture part. By the energy (norm) minimiza-
tion method, the signal with penalized norm is prone to being
extracted as the texture part. Starck endows the texture part

with an -norm . Minimizing the norm yields the
called sparse representation[7]. In practice, -norm ,
instead, is minimized by means of basis pursuit (BP). The kernel

, as well as the corresponding normalized bases , deter-
mines what kind of texture to seek, since BP prefers to pursue
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the signal with the larger projection into certain row of as the
texture part. Reference [7] fixed 16 16 local DCT (excluding
the dc base) as , while Peyré [8] proposed to supervisedly
learn the bases from texture sampler by -SVD method [10].
Inspired by the previous works, this letter proposes to unsuper-
visedly learn the kernels from the homogenous textures after the
segmentation, followed by the image decomposition.

Not only does texture segmentation perform for learning
kernel, but also it is a primal goal as important as image decom-
position, since the statistics of the subtexture are utilized for
watermarking [1]. The segmented subtexture should be piece-
wise and homogeneous, and it does not need be in semantics,
so this letter adopts clustering-based segmentation. Each pixel
is assigned to the closest cluster according to the closeness
between its neighborhoods and the cluster center. Clustering
can be thought as an extreme case of sparse representation,
as only one basis, i.e., the cluster center, is allowed for the
approximate representation.

Our contribution, in this letter, is two-fold. First, the image
decomposition and the texture segmentation are united into a
sparse representation framework. Second, the kernel is unsu-
pervisedly learned such that it is more suitable to capture each
cluster of the homogenous subtexture.

II. MODEL

A. Decomposition by Sparse Representation

An image of size is vectorized into one-dimensional
vector of length in the raster scanning order. is the
combination of the nontexture part and the texture part .
The image decomposition is to find the two parts by solving

(1)

where represents the total variation of the nontexture
part (consistent with [3]–[6]) and is the self-similar struc-
ture contained by the texture part. captures the residue noise.
From the viewpoint of [9], the sparse coding model is not effec-
tive in the residue noise; in fact, to represent the residue noise
losslessly needs so many bases that the representation is not
sparse anymore. We argue that the texture should contain both
the self-similar structure and the residue noise . The tex-
ture part is thus , not only involved. The parameters
and contribute the final signal distribution among the three
parts.
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B. Segmentation by Clustering
The goal of the image segmentation is to assign each pixel

a cluster label in some finite set ( ). Under the label
map , the subtexture ( ), composed of all the pixel
with , is the subset of the texture part . Each
is piecewise smooth and consistent with the corresponding sub-
texture’s appearance. All the subtextures compose the texture
part , denoted by

We use mixture of probabilistic principal component anal-
ysis (MPPCA) [11] for pixels clustering. As one of the kernel

-means method [12], MPPCA estimates its kernel by method
of PCA. The salient features of MPPCA are introduced below,
which inspire the kernel design used in (1).

In the one-cluster case, each neighborhood around
the pixel has a generative model , where

is the base to be estimated, is the latent variable, and
is the residue. The likelihood of the neighborhoods is

.
The key assumptions of MPPCA are: 1) conforms to a

lower dimensional Gaussian distribution with zero mean and
identity covariance; 2) is a Gaussian white noise with diagonal
covariance. Under such assumptions, the maximum-likelihood
solution of the bases has some closed forms, such as

(2)

where the columns of are the eigenvectors of the neighbor-
hoods’ correlation matrix corresponding to the first eigen-
values, is a matrix containing the principal eigenvalues
arranged in descending order, is obtained by averaging the
nonprincipal eigenvalues left, and is a unit matrix. In fact,
is the Karhunen Loeve basis. The MPPCA bases, however, ab-
sorb the partial eigenvalues corresponding to the eigenvectors,
so that can keep an identity covariance.

In the multi-cluster case, we denote the bases for cluster by
, the probability of belonging to cluster by , and

the prior mixing probabilities by . The likelihood of all the
neighborhoods is

The maximum-likelihood solution of the bases is esti-
mated by expectation-maximization (EM) methods. Finally,

( ) can indicate the result of clustering in
probability. We assign pixel the label having the maximal
conditional probability

C. Learning Kernel by PCA
The clustering based on MPPCA implies that the self-similar

structure of the subtexture is related to its principal components.

That is the reason why we learn the kernel in formula by PCA.
Solving (1) by BP can extract the signal’s principal components,
i.e., the self-similar structures.

For a segmented subtexture , denote the subkernel by

The superscript means that is calculated in the same way
as in (2) but the correlation matrix is obtained by counting
the neighborhoods whose center pixel is labeled by .

How the make up the is following. The projection of
each neighborhood into the corresponding subkernel yields

projected neighborhoods, and accordingly, the projection of
the image of size into corresponds a linear mapping

, equivalent to if vector-
izing the image and the projected images. So has rows
and columns. Thus, minimizing can approximate
the sparse representation of on the bases . Note that al-
though seems redundant for its column’s amount larger than
its row’s, it may be still incomplete, because the row rank of
may be smaller than . That is the reason why PCA kernel
may ignore capturing some unique structures of the image.

The training exemplars are certainly crucial for learning the
kernel. We pre-decompose the image by TV- model [4] to
obtain a coarse estimation of the parts

Then, to calculate the sampler correlation matrix, the neighbor-
hoods are collected from the estimated according to the label
map . Neither to design the kernel artificially like [6] nor to
assign the sampler texture subjectively for learning like [8], the
burden of the supervision for learning is reduced to choose a
suitable parameter of TV- model. Experientially, ranges
from 0.5 to 1.5 and the learned kernel is not so sensitive to the

within the above range.

III. ALGORITHM

Algorithm for Image Decomposition and Texture Segmentation

Segmenting Pixels

• Pixels clustering by MPPCA

• Labeling by maximizing the conditional probability

Learning Kernels

• Estimate by TV- decomposition at certain

• For each label ,

– Collect the neighborhoods samplers labeled by from

– Calculate the subkernel by PCA

Decomposing Image

• Extract and from by TV- decomposition at

• Extract from by basis pursuit using the subkernel
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Fig. 1. Segmentation of Barbara, Zebra, and Children.

• Set

• Extract and from by TV- decomposition at

• Set , ,

Labeling Parts

• Label as nontexture part and as texture part

• Segment each subtexture according to the label map

The neighborhoods’ size for the pixels clustering and the sub-
kernel’s size are both set as 17. The cluster amount is set as
6 and the principal components amount is set as 16. Selec-
tion of , , and depends on the image and the application
task, while and is often suitable. We use
the NETLAB package for estimating the MPPCA parameters
[13], and the maximum-flow algorithm for TV- decomposi-
tion [14].

For fair comparison, we use 17 17 local DCT and -SVD
as the kernel . The -SVD kernel is learned at the same step
of the above algorithm as the PCA kernel. There is no iter-
ated thresholding in the algorithm, and fast and fair comparison
hence can be performed despite not optimal. The codes are avail-
able at http://mc.eistar.net/Media%20&%20Security.htm.

IV. RESULT

The results of the segmentation are shown in Fig. 1. The de-
composition results by the proposed PCA kernel, -SVD kernel
[7] and local DCT kernel [6], are ordered, respectively, from the
left column to the right in Fig. 2. The three kernels are compared
under the same parameters; is chosen as 1.5, 0.7, and 1, re-
spectively, for image Barbara, Zebra, and Children. The perfor-
mances of the PCA kernel process are comparable to that of the
KSVD kernel, while the local DCT kernel performs poorly since
it overfills the texture part with some unique structures, e.g.,
the right eye of Barbara, and meanwhile extracts the self-sim-
ilar structure more deficiently, e.g., the texture in Children. The
kernel learned by PCA is similar to the one by -SVD, as shown
in Fig. 3. However, we emphasize that PCA is quite faster than

-SVD.

Fig. 2. Decomposition by PCA (left), KSVD (middle), and DCT (right).

V. UNIFIED FRAMEWORK

Image decomposition and segmentation are interdependent
and interactional. The segmentation facilitates the analysis and
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